On Burenkov's extension operator preserving Sobolev-Morrey spaces on Lipschitz domains

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semilinear Poisson problems in Sobolev-Besov spaces on Lipschitz domains

Extending recent work for the linear Poisson problem for the Laplacian in the framework of Sobolev-Besov spaces on Lipschitz domains by Jerison and Kenig [16], Fabes, Mendez and Mitrea [9], and Mitrea and Taylor [30], here we take up the task of developing a similar sharp theory for semilinear problems of the type ∆u − N(x, u) = F (x), equipped with Dirichlet and Neumann boundary conditions.

متن کامل

Trace Theorems for Sobolev Spaces on Lipschitz Domains. Necessary Conditions

A famous theorem of E. Gagliardo gives the characterization of traces for Sobolev spaces W 1, p (Ω) for 1 ≤ p < ∞ when Ω ⊂ R is a Lipschitz domain. The extension of this result to W m, p (Ω) for m ≥ 2 and 1 < p < ∞ is now well-known when Ω is a smooth domain. The situation is more complicated for polygonal and polyhedral domains since the characterization is given only in terms of local compati...

متن کامل

Boundary Value Problems in Morrey Spaces for Elliptic Systems on Lipschitz Domains

Let Ω be a bounded Lipschitz domain in Rn, n ≥ 3. Let L be a second order elliptic system with constant coefficients satisfying the Legendre-Hadamard condition. We consider the Dirichlet problem Lu = 0 in Ω, u = f on ∂Ω with boundary data f in the Morrey space L2,λ(∂Ω). Assume that 0 ≤ λ < 2 + ε for n ≥ 4 where ε > 0 depends on Ω, and 0 ≤ λ ≤ 2 for n = 3. We obtain existence and uniqueness resu...

متن کامل

Spaceability on Morrey Spaces

In this paper, as a main result for Morrey spaces, we prove that the set $mathcal M_q^p(mathbb R^n)backslashbigcup_{q<rleq p}mathcal M_r^p(mathbb R^n)$ is spaceable in $mathcal M_q^p(mathbb R^n)$, where $0<q<p<infty$.}

متن کامل

Estimation of Sobolev-type embedding constant on domains with minimally smooth boundary using extension operator

In this paper, we propose a method for estimating the Sobolev-type embedding constant fromW1,q( ) to Lp( ) on a domain ⊂Rn (n = 2, 3, . . . ) with minimally smooth boundary (also known as a Lipschitz domain), where p ∈ (n/(n – 1),∞) and q = np/(n + p). We estimate the embedding constant by constructing an extension operator fromW1,q( ) toW1,q(Rn) and computing its operator norm. We also present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2016

ISSN: 0025-584X

DOI: 10.1002/mana.201500459